martedì 1 aprile 2008

"difficoltà logiche del concetto di infinito"

Zenone di Elea è uno degli "indimenticabili" del liceo. Da molti forse archiviato come il difensore di Parmenide - quindi negatore della molteplicità, del divenire e del movimento - o più semplicemente, come autore del famoso paradosso di "Achille e della tartaruga"... In realtà, Zenone, contemporaneamente all'esperienza pitagorica, rappresenta il primo vero esempio della difficoltà della mente umana ad approcciarsi al concetto di incommensurabilità ed infinito.

Un concetto più grande di noi, per definizione. Tant'è che la scuola di Pitagora quando scoprì che la diagonale del quadrato era un numero irrazionale (radice di due), entrò profondamente in crisi. Fatto che indusse i geometri greci a pensare di dover scindere necessariamente la geometria dalla matematica, "interpretando la prima come studio del continuo, la seconda come studio del discontinuo" [Immagini dell'uomo - Geymonat], il che sostanzialmente coincise con la sconfitta della dittatura del numero intero (o frazione di numeri interi) e per esteso della misurabilità del mondo reale.

Anche quelli di Zenone non furono ragionamenti capziosi apparentemente logici (sofismi), bensì esempi di difficoltà rispetto agli stessi concetti che sconvolsero la scuola di Pitagora. "Queste difficoltà logiche suscitarono nei greci tale diffidenza nei confronti dell'infinito, da persuaderli a compiere ogni sforzo pur di escludere il concetto da ogni seria costruzione scientifica" [ibidem]. E' una paura profonda. Perchè in fondo mina il passaggio dal mito al logos. Se l'unica spiegazione del mondo reale deve affidarsi a processi razionali, come concepire l'esistenza di un insieme di numeri che, esattamente come in matematica tecnicamente sono definiti, è "irrazionale"? Numeri che, guarda un po', dopo la virgola, vanno avanti all'infinito! Come concepire che, nella scienza di "ciò che si apprende" (Mathema-tike), possano essere presenti oggetti di questa natura? Oh, come sarebbe facile fare un passo indietro e riaggrapparsi al mito!

Il paradosso di Achille e della tartaruga è così riassumibile. Achille piè veloce intende intraprendere una gara di velocità con una tartaruga. Dato lo scontro impari, il primo decide di lasciare alla seconda un piccolo margine di vantaggio. Qui l'errore secondo Zenone, perchè Achille, così facendo, non riuscirà più a raggiungere la tartaruga. Infatti, quando inizierà la gara, Achille per raggiungere la posizione di partenza della tartaruga T(0) dovrà impiegare una certa quantità di tempo, che la tartaruga nel frattempo utilizzerà per muoversi da T(0) alla posizione T(1); successivamente Achille per raggiungere la posizione T(1) dovrà impiegare una certa quantità di tempo, che consentirà nuovamente alla tartaruga di avanzare in una posizione T(2), e così via. Insomma la divisione dello spazio in infiniti spazi mai nulli spinge Zenone ad affermare il paradosso, partendo dal presupposto che una somma di infiniti addendi debba necessariamente dare un risultato infinito.

Un paradosso che venne risolto matematicamente solo nel XVII-XVIII secolo con lo sviluppo dell'analisi di Newton-Leibniz, e la susseguente introduzione della teoria dei limiti. In particolare, la scoperta che la somma di determinate infinite successioni dava un risultato finito. Così come la somma di (1/2)^n - vale a dire 1/2 + 1/4 + 1/8 + 1/16 + ... - dà come risultato 1. Con tale procedimento, e sfruttando quella che è definita "serie geometrica", è possibile pervenire al tempo impiegato da Achille per raggiungere la tartaruga.

Il fatto che ci siano voluti "appena" 2200 anni per capire quanto tempo occorresse ad Achille "piè veloce" per raggiungere la tartaruga, può essere ben considerato l'emblema della nostra difficoltà innata ad approcciarci all'infinito e all'incommensurabile. Un limite logico spesso insormontabile che ha costretto l'uomo a ricorrere nella storia ad espedienti quali Dio, dogmi, rivelazioni e dottrine. Declinando dunque il logos, a favore del mito.

Technorati technorati tags: , , , , , ,


2 commenti:

Fabri ha detto...

qui mi tornano in mente le parole di mio papà, che quando ero piccina cercava di rispondere alle mie domande "dove finisce l'universo?" ecc.
Non siamo in grado di concepire l'"infinito", se non ricorrendo ad altro..e lì si finisce in un circolo vizioso!
bah..domande angoscianti, poichè senza risposta.
baci baci

RaShO O°o°O ha detto...

Qui, invece, a me tornano in mente le tue parole quando dicevi "per me credere in Dio è una forma di chiusura mentale". Assolutamente seria, senza intenzione di schernire od oltraggiare chi ha fede in una religione. Anzi conoscendoti so di certo che mai cosa sarebbe potuta essere più lontana dalle tue intenzioni (mi basta pensare a come rabbrividisci quando senti bestemmiare). Un distacco mica male. Io a volte fondo le due cose, e mica va bene.

Vabbuò, ti proporrò come saggia imperturbabile del mese...